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Theranostics emerges as a targeted, efficient and safe pharmacotherapy 

in the field of medicine. It is a novel concept involving the use of a 

single agent for both diagnostic and therapeutic applications, thus 

providing a cost-effective treatment protocol. By promoting patient-

centered care, it enables a change from conventional medicine to 

personalised medicine. In the present review, various theranostics 

agents and their potential applications in disease management are 

described.  An extensive literature search was conducted using 

keywords “Theranostic”; “Theranostic agents”; “Nuclear medicine”; 

“Nanotechnology”; Theranostics application” in the public domains of 

Science Direct, PubMed and Google Scholar. The articles were 

shortlisted based on their usefulness for the review. Theranostic agents 

such as nanoparticles, nuclear medicine, genetic materials, antibodies 

and antibody-related therapeutics are used in the management of 

diseases. The theranostic agents have been used for the diagnosis, 

delivery of therapeutic agents and monitoring the patients in response 
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to the treatment of cancers, neuronal diseases, atherosclerosis, and 

diabetes mellitus. The emerging theranostics approach has become a 

predictive, preventive, personalised and participatory medicine in 

healthcare management with the potential to improve the quality of 

clinical care and treatments. 
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1. INTRODUCTION 

Theranostics, a term coined by 

Funkhouser in 2002, combines the 

modalities of diagnosis and therapy by 

enabling the acquisition of diagnostic 

images and delivery of therapeutic agents 

simultaneously, hence resulting in a novel 

treatment paradigm [1,2]. Specific 

biological pathways in the human body are 

utilised to obtain diagnostic information, 

which in turn increases the probability that 

therapeutic agents can be targeted 

specifically to the disease site to limit the 

damage to the normal healthy tissue in the 

surrounding[3]. Since theranostics promotes 

specific and individualised treatment 

approaches for a variety of diseases, it 

enables a change from conventional trial-

and-error medicine to modern personalised 

medicine, thus improving the quality of 

pharmacotherapies[4]. A study performed 

by Seidlin et al. in 1946 revealed that the 

first successful nuclear theranostic agent 

was iodine-131 (131I), which was used for 

diagnostic imaging, target-expression 

confirmation and treatment of thyroid 

cancer [5]. After the administration of 

radioiodine, thyroid cancer cells were 

selectively harmed or killed. More iodine 

was deposited and the cells could be 

visualised using high energy gamma 

radiation emitted from 131I in gamma 

cameras [5]. 131I was proven to be useful in 

the treatment of thyrotoxicosis in the 19th 

century [3]. To date, 131I remains the gold 

standard for the diagnosis and therapy of 

thyroid diseases[6]. 

In recent years, numerous efforts have 

been devoted to the development of highly 

efficient, safe and non-toxic delivery 

vehicles for theranostics applications. 

Among the most successful examples are 

peptide receptor radionuclide therapy 

(PRRT) and peptide receptor scintigraphy 

(PRS) of neuroendocrine tumours (NET), an 

orphan disease [7]. Various nanocarriers 

such as polymeric nanoparticles, liposomes, 

dendrimers, carbon nanotubes (CNTs) and 

quantum dots (QDs) have been explored for 

the targeted co-delivery of diagnostic and 

therapeutic agents with fewer side effects for 

cancer patients[8]. Biological materials such 

as nucleic acids, peptides and protein are 

designed to enable the early detection and 

treatment of cancers [9,10]. The goal of 

theranostics is to increase the quality of 

patient care and clinical treatments through 

the identification of the right drug for the 

right patient at the right time. The efficacy, 

efficiency and cost-effectiveness of 

treatments can be significantly improved by 

the implementation of appropriate 

theranostic agents [11]. The present review 

provides a detailed overview of theranostic 

agents and their applications in the treatment 

of various pathologies including cancer, 
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neuronal diseases and disorders, 

atherosclerosis and type 1 diabetes mellitus. 

2. THERANOSTIC AGENTS  

2.1 Nanotechnology 

Nanotechnology is the study and 

application of materials and devices that are 

conducted on nanoscale, which at least one 

dimension sized from 1 to100 nm [12]. It is 

significant to take into consideration 

individual molecules and interacting groups 

of molecules concerning the bulk 

macroscopic properties of the material or 

device because usual physics and chemistry 

rules do not apply on the scale of atoms and 

molecules. It manipulates fundamental 

molecular structure, which in turn controls 

the macroscopic chemical and physical 

properties [13]. Nanoparticles are 

categorised into different classes depending 

on the size, morphology, chemical and 

physical properties. 

2.1.1 Carbon-Based Nanoparticles  

Carbon-based nanoparticles are divided 

into CNTs and fullerenes. CNTs are 

elongated, tubular graphene sheets mainly 

used for structural reinforcement. The 

structure of these nanotubes defines whether 

they are single-walled carbon nanotubes 

(SWCNTs) or multi-walled carbon 

nanotubes (MWCNTs). CNTs have the 

ability to conduct heat along the length but 

not across the tube. Deposition of carbon 

precursors can synthesise CNTs, 

particularly from  atomic carbons that 

vaporised from graphite [14].Fullerenes 

possess a hollow cage composition 

containing sixty or more carbon atoms. 

These allotropes have carbon units 

positioned as pentagon and hexagon and 

each carbon atom is sp2 hybridised. 

Fullerenes show excellent electrical 

conductivity and electron affinity. Together 

with  their high strength and structure, they 

show value in the commercial [15]. 

2.1.2 Ceramic Nanoparticles  

Ceramic nanoparticles contain oxides, 

carbides, carbonates and phosphates which 

are non-metallic inorganic solids. It is 

chemically inert and can be synthesised via 

heat and successive cooling and exerts 

properties to withstand high temperature. 

These nanoparticles act as excellent drug 

delivery agents in several diseases. It is 

known to be applied in the use as an imaging 

agent, photocatalysis and photodegradation 

of dyes [16,17]. 

2.1.3 Metal Nanoparticles 

Metal nanoparticles can be synthesised 

in various ways such as chemical, 

electrochemical or photochemical methods. 

To chemically obtain a metal nanoparticle, 

metal-ion precursors should be reduced 
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using chemical reducing agents. These 

nanoparticles exhibit high surface energy 

properties to absorb small molecules. It 

serves as vehicles for gene and drug delivery 

which is excellent for targeted drug delivery. 

In addition, these nanoparticles have been 

successfully used in biomedical imaging, 

magnetic separation, and preconcentration 

of target analytes [18]. 

2.1.4 Semiconductor Nanoparticles  

Semiconductor nanoparticles exhibit 

properties between metals and non-metals. 

Generally, semiconductor nanoparticles 

possess large band gaps, that result in 

different properties with bandgap tuning. 

Common applications of these nanoparticles 

are in the field of photo-optics and 

photocatalysis. Not only that, these 

nanoparticles are also utilised in a number of 

electronic devices and water splitting 

applications [19,20]. 

2.1.5 Polymeric Nanoparticles  

Two major types of polymeric 

nanoparticles are nano-capsules and 

nanospheres. They are usually organic-

based nanoparticles. A nanosphere particle 

possesses a matrix-like structure where 

active constituents and the polymer are 

adsorbed at the outer boundary of the 

spherical surface. On the other hand, the 

nanocapsule particle possesses core-shell 

morphology where the active constituents 

are encapsulated by a shell of polymer. 

Polymeric nanoparticles demonstrate its 

advantages in the field of diagnostic 

imaging, combine therapy and site-specific 

targeting because these particles are able to 

control drug release and protect drug 

molecules. Due to the highly biodegradable 

and biocompatible properties, polymeric 

nanoparticles are used in drug delivery and 

diagnostics [21]. 

2.1.6 Lipid-Based Nanoparticles  

Lipid nanoparticles consist of lipid 

components which have a spherical shape. 

These spherical lipid components usually 

have a diameter of 10 nm to 100 nm. A lipid 

nanoparticle is made up of a solid core 

together with a matrix. Due to the lipophilic 

properties of the nanoparticle, surfactants 

and emulsifiers are needed to stabilise the 

structure. Lipid-based nanoparticles are 

widely used as a drug carrier and delivery in 

the biomedical field and treatment of cancer 

through RNA release [22]. 

2.2 Nuclear Medicine  

Nuclear imaging utilises gamma, 

positron and beta emitters. Examples of 

gamma emitters include technetium-99m 

(99mTc) and iodine-123 (123I) whereas 

gallium-68 (68Ga) and fluorine-18 (18F) are 

characterised as positron emitters [23,24]. 
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On the other hand, beta emitting isotopes 

include lutetium-177 (177Lu) and yttrium-90 

(90Y) [25]. 

2.2.1 Radionuclide Therapy  

Radioiodine is the first theranostic 

radiopharmaceutical agent in nuclear 

medicine history [26]. Radioiodine therapy 

(RIT) is the gold standard for theranostics in 

thyroid diseases [26]. The neutron 

bombardment of tellurium-131 results inthe 

synthesis of radioiodine, a low-cost nuclear 

reactor product. 131I is an isotope of iodine 

that combines both the characteristics of 

gamma and beta emitters. Radioiodine 

imaging is useful in predicting the lesion 

response to 131I treatment by providing 

detailed information on the biological status 

of each cancerous lesion [27]. In the case of 

radioiodine therapy in thyroid cancers, a 

gamma camera or single-photon emission 

computed tomography (SPECT) is used to 

visualise the targeted lesions during the 

process of 131I radiation [28] 

2.2.2 Radiolabelled Somatostatin 

Analogs Therapy 

Somatostatin receptors (SSTRs) are the 

targetsfor the pairing of 111In-/68Ga-labelled 

diagnostic imaging and 90Y-/177Lu-labelled 

treatment compounds. SSTR1, SSTR2, 

SSTR3, SSTR4 and SSTR5 are five 

subtypes of the membrane-bound receptors 

in which SSTR2 is normally addressed for 

theranostic purposes[29]. An example of 

this can be seen in NET where the SSTR2 

subtype is overexpressed [30]. Three 

somatostatin analog (SSA) tracers, which 

are DOTA-TATE, DOTA-TOC and DOTA-

NOC, are labelled with 68Ga for diagnostic 

purposes, mainly positron emission 

tomography (PET) imaging. All the three 

SSA tracers bind specifically with SSTRs 

[31]. 111In-labelled SSTRs have lower 

sensitivity and specificity in the detection of 

NET when compared to 68Ga-labelled 

SSTRs [32]. On the other hand, DOTA-

TATE and DOTA-TOC are labelled with 

either 90Y or 177Lu for therapeutic purposes 

[30]. Longer path length of 90Y beta particles 

produces better coverage for larger 

metastases whereas 177Lu provides less off-

target radiation and radiotoxicity for smaller 

metastases due to shorter path length [33]. In 

NET therapy, 177Lu, [177Lu]-Lu-DOTA-

TATE and DOTA-TOC are the most widely 

used agents owing to the low energy, small 

range and less haematotoxic effects 

[34].PRRT is a molecular targeted therapy 

for NET and it involves tumour uptake in the 

SSTR imaging. The process of PRRT begins 

by receiving a dose of amino acid solution 

intravenously to protect the body organs 

from radiation. A radiopeptide is formed 

through the combination of a synthetic cell-

targeting protein called octreotide and a 

small amount of radioactive substances. 
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High doses of radiation will be delivered to 

the tumour once the radiopeptide binds to 

the SSTRs that are located on the NET cells 

[30]. 

2.2.3  Prostate-specific Membrane 

Antigen Radioligand Therapy  

PSMA-617 and PSMA-11 are the available 

radiopharmaceuticals that target prostate-

specific membrane antigen (PSMA) 

[30].The imaging purpose is to localise and 

determine the extent of disease while the 

therapeutic use of the agent is to deliver the 

treatment to identify the site of injury. 

Between the two agents, radiolabelled 

PSMA-617 is mainly used for therapeutic 

purposes as it is the favourable kinetic for 

both imaging that is labelled with 68Ga and 

therapy that is labelled with 177Lu [35]. On 

the other hand, PSMA-11 is rarely used due 

to its high kidney uptake [36].  

2.3 Genetic Materials  

2.3.1 MicroRNAs 

MicroRNAs (miRNAs) have been reported 

to regulate tumour suppressor genes and 

play a role as cancer biomarkers. The 

detection and inhibition of the miRNA 

function are useful as cancer theranostic 

probes, thus minimising side effects and 

invasiveness. Kim et al. developed a cancer-

targeting theranostic probe in a single 

system using an AS1411 aptamer- and 

miRNA-221 molecular beacon-conjugated 

magnetic fluorescence nanoparticle (MFAS 

miRNA-221 MB) to target the cancer tissue 

concurrently while imaging the 

intracellularly expressed miRNA-221 as 

well as to treat carcinogenesis in which 

miRNA-221 is involved. Hence, it resulted 

in anti-tumour therapeutic effects by ceasing 

the function of miRNA, demonstrating an 

effective astrocytoma-targeting 

theranostics[9].  

miRNAs are the main regulators of the 

human genome in charge of the myriad 

cellular pathways for the controlling of 

growth during physiologic and pathologic 

conditions. It was evident that the 

deregulation of miRNA promotes events 

which are linked to tumour initiation, 

metastases and drug resistance as seen in 

multiple myeloma (MM), which is 

commonly known as an invariably fatal 

haematologic malignancy [37]. Therefore, 

the degradation or blocking of the 

translation process of mRNA targets leads to 

the modulation of the expression by more 

than half of the protein-coding genes within 

the human genome by miRNAs [38]. 

According to genomic and bioinformatic 

analyses, it was reported that miRNAs play 

an important role in gene expression to 

control various biological processes which 

include cellular growth, differentiation, 

development and apoptosis[39]. Moreover, 
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transcriptional profiling suggests that 

miRNA expression profiles have the 

potential to classify the types of tumour. It 

was also identified that miRNA repertoire is 

a stable and unique feature that represents 

specific types of tumour and stages of 

differentiation [40].Additionally, miRNAs 

have the potential as diagnostics to 

differentiate the distinct expression 

signatures that determines MM from normal 

or monoclonal gammopathy of 

undetermined significance of plasma cells 

(MGUS PCs). Furthermore, each MM 

subtypes demonstrates their respective 

unique miRNA signatures hence the 

predictors may eventually replace the 

current available clinical and biological 

markers used to diagnose MM. According to 

a recent study, it was reported that synthetic 

miRNA-34a possessed not only anti-tumour 

properties but anti-proliferative properties, 

apoptotic effects and the modulation of gene 

expression in clinically relevant xenograft 

models of myeloma [41]. 

Cava et al. investigated the theranostic 

application of miRNA-429 in human 

epidermal growth factor receptor 2-positive 

(HER2-positive) breast cancer. Changes in 

gene expression induced by hypoxia-

inducible factors(HIF) signaling contribute 

to many of the hallmarks of cancer that 

enable tumour growth, survival and 

invasion. The direct targeting of oncogenic 

miRNA-429 on von Hippel-Lindau (VHL) 

mRNA, an essential molecule for the 

degradation of HIF1α resulted in the 

regulation of the HIF1α pathway. Moreover, 

an increased proliferation and migration of 

breast cancer cells was observed in HER2-

positive breast cancer due to the 

overexpression of miRNA-429. 

Additionally, it was found that the silencing 

of miRNA-429 effectively delayed tumour 

growth so miRNA-429 could be proposed as 

a therapeutic probe in HER2-positive breast 

cancer tumours[42]. 

2.3.2 Peptides  

Cho et al. developed protein kinase C-

delta (PKCδ) as a theranostic agent for 

glioma. Peptides were used for glioma 

treatment as they are biostable, non-toxic 

and small in size. A relative binding affinity 

for antibody and localisation in the U373 

glioma cell were exhibited by the synthetic 

peptide produced. Moreover, the fluorescein 

isothiocyanate-labelled peptide with 

anIC50of 1.4 μMin vitro inhibited the kinase 

activity of PKCδ. Hence, the peptide 

developed may have the potential to be a 

promising therapeutic agent against 

malignant brain tumours [10]. 

2.3.3 Functional Nucleic Acids 

Functional nucleic acids (FNAs), which 

include aptamers, DNAzymes, andDNA-
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based nanomachines (DNMs), are nucleic 

acids which possess functions beyond the 

notable genetic roles. FNAs not only possess 

common advantages of nucleic acid-based 

materials such as low cost, low 

immunogenicity, biocompatibility and 

simplicity of chemical modification, but also 

possess remarkable properties such as high 

binding affinity and specificity of aptamers, 

efficient and specific gene editing ability of 

DNAzymes, and logic-controlled 

designability of DNMs. These properties 

exhibited by FNAs make them appealing for 

applications in cancer theranostics. The first 

in vivo application of a DNM for cancer 

theranostics was recently reported. Li and 

colleagues decorated a flat origami sheet 

with thrombin enzymes which were 

inhibited by rolling and locking with DNA 

aptamers. After reaching the tumour site, the 

targeting nucleolin aptamers anchored the 

nanostructures on the cancer endothelial cell 

surface and binded with nucleolin to open 

the DNA nanotube. The thrombins that were 

exposed catalysed blood clotting, caused 

vascular occlusion, leading to tumour cell 

starvation and cell death. Moreover, the in 

vivo imaging results demonstrated the 

targeting and accumulation ability of this 

nanomachine at the tumour site as well as 

the high tumour growth inhibition efficiency 

of the nanomachine. The targeted delivery 

and logic-controlled exposure of thrombins 

immensely reduced the unwanted side 

effects and prolonged the survival time of 

the tumour-bearing mice [43]. 

2.3.4 Small Interfering RNA 

Nanocomplex 

In a study conducted by Shi et al., 

polyethylene glycol (PEG)-modified 

manganese dioxide (MnO2) nanosheets were 

connected with osteopontin (OPN) small 

interfering RNA (siRNA) to form a PEG-

MnO2-OPN siRNA nanocomplex using a 

modular streptavidin bridge for the 

theranostic applications of renal carcinoma 

in vitro and in vivo. The PEG-

MnO2nanosheets demonstrated effective 

tumour growth inhibition of 786-O tumour-

bearing mice, thus showing that PEG-

MnO2nanosheets have the potential for the 

fabrication of a magnetic resonance 

imaging (MRI)-based theranostic system 

[44]. 

2.4 Antibody-related Therapeutics 

Monoclonal antibodies (mAbs) and 

antibody-related therapies are widely 

established in cancer treatment. They are 

commonly used in targeted therapies as they 

are designed to target specific sites, such as 

tumour cell membranes, immune cells and 

tumour microenvironment. However, not 

every patient that has undergone targeted 

therapies using antibodies will get the 

benefits. Moreover, the effects can be short-
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lived as patients may have developed 

resistance [45]. Additionally, targeted 

therapies are very costly and may induce 

side effects [45]. These outcomes may be 

due to the heterogeneity on tumour target 

expression [45,46].  Therefore, it is crucial 

to choose the suitable patients and to 

monitor their response. Recently, the 

antibody theranostics approach has been 

widely used in constructing personalised 

antibody therapies. Antibodies are known to 

direct against specific targets and are easy to 

label [46]. At the same time, by 

incorporating non-invasive SPECT and PET 

molecular imaging techniques, it is able to 

provide insights on the exposure of 

radiolabelled mAbs and antibody-related 

therapeutics throughout the whole body. It 

has the potential to explain tumour target 

heterogeneity, expression of drug target, 

tracer uptake in the tumour and saturation of 

the tumour[45,46]. Those patients who are 

suitable to undergo antibody treatments will 

then be selected. To date, there are a total of 

24 antibodies and antibody-related therapies 

approved by the U.S. Food and Drug 

Administration (FDA) or the European 

Medicines Agency (EMA) for the treatment 

of cancer[45,46]. These include 20 mAbs, 1 

bispecific T-cell engagers (BiTE), 2 

antibody-drug conjugates (ADCs) and 1 

radioimmunotherapy antibody [46]. 

2.4.1 Monoclonal Antibodies  

The possible use of theranostic agents 

such as trastuzumab in making the clinical 

decisions has been widely investigated in 

several studies. Trastuzumab is a therapeutic 

antibody in breast cancer treatment. It was 

found that 111In-trastuzumab SPECT 

imaging can identify hidden HER2-positive 

tumour lesions that were missed by 

traditional imaging in metastatic breast 

cancer patients [47]. This indicates that 

molecular antibody imaging can detect new 

tumour lesions that are not found using 

conventional imaging. Additionally, serial 

SPECT imaging with 111In-trastuzumab is 

performed to examine the tumour tracer 

uptake before and after trastuzumab 

treatment [48].  Besides, a study conducted 

by Gebhart et al., showed that the use of 

zirnonium-89-(89Zr)-trastuzumab PET 

imaging in HER2-positive breast cancer 

along with biopsies had successfully 

assessed patients’ tumour heterogeneity and 

predicted the outcome of 

trastuzumabemtansine (T-DM1) treatment 

[49].On the other hand, angiogenesis is 

known to be one of the causes of cancer 

progression and is usually stimulated by 

vascular endothelial growth factor A 

(VEGF-A). A few studies conducted on anti-

VEGF-A antibody 89Zr-bevacizumab 

clearly showed that it can be used to 

visualise drugs targeting the growth factors 

in the microenvironment. For example, a 

study showed that 89Zr-bevacizumab PET 
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can detect saturation of heterogeneous tracer 

in the tumour lesions [50]. Additionally, 

tumour detection using molecular antibody 

imaging has been investigated in many 

centres across the United States. It is 

believed that pre-surgical iodine-124 (124I)-

girentuximab PET has higher sensitivity and 

specificity as compared to traditional 

computed tomography (CT) in classifying 

renal lesions, both benign and malignant 

[46]. In short, the antibody theranostics 

approach is capable of helping physicians to 

make the clinical decisions prior to initiation 

of therapy.  

2.4.2 Immune Checkpoint Inhibitors  

Molecular imaging using immune 

checkpoint inhibitors (ICIs) is found to be 

potentially beneficial in immunotherapy. It 

provides insights of the immune response, 

thereby aids in better selection of patient and 

treatment. For instance, a study has 

demonstrated that PET imaging along with 

therapeutic antibody-based tracers can 

obtain concise information on the biological 

functions and importance of immune 

checkpoints due to its better specificity and 

resolution [51].An experiment was 

performed on ICIs targeting the 

programmed cell death protein-1 (PD-

1)/programmed cell death ligand-1 (PD-L1) 

pathway. Mice were treated with either 

64Cu-NOTA-PD-1 or 64Cu-NOTA-PD-L1 

mAb. It showed that PD-1 immunoPET can 

detect PD-1+ tumour-infiltrating 

lymphocytes (TILs) after combined immune 

radio therapy and differences in intra 

tumoural PD-L1 expression. It also 

successfully identified that the lung is an 

organ with highly expressed interferon 

gamma (IFN-γ)-inducible PD-L1.  

2.4.3 Bispecific T-cell Engagers 

Blinatumomab is a treatment approach 

for relapse Philadelphia chromosome-

negative or refractory B-cell precursor acute 

lymphoblastic leukaemia. A study has 

examined that kidneys exhibited the greatest 

uptake of 89Zr-solitomab (AMG 110), 

followed by liver and tumour. Depending on 

the dose,89Zr-AMG 211 directed against 

carcinoembryonic antigen (CEA) on tumor 

cells and the CD3 epsilon (CD3e) subunit of 

the human T-cell receptor complex on T-

cells also showed CEA specific targeting in 

tumour xenograft of mice [52]. 

2.4.4 Antibody-drug Conjugates  

Apart from that, the antibody 

theranostics approach can be applied for 

studying the antibodies with payload. ADCs 

are a subclass of antibody-related 

therapeutics, in which they consist of a 

tumour-specific mAb conjugated to a 

cytotoxic payload. ADCs are used as 

adjuvant therapy in chemotherapy by 
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causing cytotoxic drug to be accumulated 

within the cancer cells, thereby decreasing 

the risk of systemic toxicity [45]. A 

radiolabelled naked antibody of an ADC for 

PET imaging has the potential to assess 

organ biodistribution and tracer tumour 

uptake. A study was carried out by 

Strickland et al. to evaluate three doses of 

89Zr-labelled naked antibody of an ADC 

targeting mesothelin in mice bearing human 

pancreatic tumour xenografts. It was 

observed that tumour uptake reduced with 

increasing doses of the naked mAb [53]. 

This reflects that the effect and saturable 

tracer distribution depends on the dose. 

Another study investigating biodistribution 

and tumour uptake was performed on 

patients with an 89Zr-labelled anti-

mesothelin naked antibody subsequently 

treated with a mesothelin-directed 

ADC[54]. The outcome showed uptake of 

the radiolabelled naked antibody in 

pancreatic and ovarian tumours. Moreover, 

monkeys administered with a 

carcinoembryonic cell adhesion molecule 6-

directed ADC, followed by 64Cu-labelled 

anti-carcinoembryonic cell adhesion 

molecule 6 naked mAb showed that bone 

marrow had the greatest tracer uptake [53]. 

Occurrence of neutropenia and anaemia 

suggesting that antibody tracer uptake has 

the potential to predict toxicity that is tissue-

specific. 

3. APPLICATIONS OF 

THERANOSTICS  

3.1 Cancers 

3.1.1 Prostate Cancer  

Prostate cancer is the leading cause of 

death in men worldwide after lung cancer. 

Effective treatments include radical 

prostatectomy and external beam 

radiotherapy but these are only applicable 

for localised prostate cancer [55]. Therefore, 

the use of PSMA ligands has been gaining a 

lot of attention among the medical 

community and researchers. PSMA, a type 

II trans-membrane glycoprotein associated 

with carboxypeptidase enzyme that has 

folate hydrolase activity, is found to be 

highly expressed during the progression of 

prostate cancer [56]. Several PSMA ligands 

incorporated with imaging studies such as 

PET and CT have been investigated. Current 

evidence suggests that the approach of 

combining PSMA ligands with PET/CT 

provides more accurate diagnosis and 

treatment of castration-resistant prostate 

cancer. One of the most common ligands 

used in prostate cancer is 68Ga-PSMA and 

this has entered clinical practice for the 

staging of the tumour. Results from a meta-

analysis have demonstrated the superiority 

of radiolabelled PSMA PET/CT over 

choline based PET/CT in detecting recurrent 

prostate cancer lesions with low PSA levels 
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(≤ 1 ng/ml) but there are fewer evidences in 

patients with higher PSA level [57]. Besides, 

68Ga-PSMA has better detection in lymph 

node metastases assessment before nodal 

salvage surgery with specificities close to 

100% as compared to histological diagnosis 

[58,59]. ProstaScint which is an 111In-

capromabpendetide scan that targets the 

intracellular domain of PSMA also has been 

used for the detection of positive lymph 

nodes before radical prostatectomy[60]. 

Several PSMA-targeting 

radiopharmaceuticals such as 123I and 99mTc 

in combination with SPECT imaging have 

been investigated in clinical trials for 

theranostic applications[61,62]. 

3.1.2 Thyroid Cancer  

RIT has become the gold standard in 

diagnosing and treating differentiated 

thyroid cancer for decades [63]. By using 

131I combined with a gamma scan or SPECT, 

visualisation of targeted lesions in thyroid 

cancer is possible [30]. There is an 

improvement in the detection and 

localisation of 131I uptake following 

thyroidectomy with 131I-SPECT/CT. In 

addition,131I-SPECT/CT has higher 

accuracy than whole-body scan (WBS) in 

evaluating lymph node and distant 

metastases [64]. 123I also has improved 

sensitivity to detect thyroid remnants 

[65,66].Other than iodine, 18F-fluorodeoxy-

D-glucose (FDG) has been used as a 

theranostic agent in thyroid cancer. A study 

has demonstrated the benefit of 18F-FDG 

PET/CT for diagnosing recurrent thyroid 

cancer in patients with negative 

thyroglobulin (Tg), negative 131I-WBS and 

increased thyroglobulin antibody (TgAb) 

level [67]. 

3.1.3 Breast Cancer 

Breast cancer has become the first leading 

cause of malignancy in women worldwide. 

There has been a lot of researches exploring 

the application of nanoparticles in breast 

cancer theranostics. Muthu et al., developed 

theranostic micelles containing conjugation 

of transferrin for the targeted delivery of 

docetaxel and ultrabright gold nanocluster 

(AuNC). The results demonstrated the 

effectiveness of the delivery system with 

potential advantages in imaging of tumour 

and its inhibition[68].Another promising 

nanotheranostic agent developed by Liu et 

al. incorporates indocyanine green (ICG) 

and hyaluronic acid (HA) into cationic 

small-sized red emission bovine serum 

albumin (BSA) protected AuNC to form 

AuNC@CBSA-ICG@HA complex. The 

results indicated that AuNC@CBSA-

ICG@HA has an anti-tumour effect with 

95% suppression of tumour growth in mice 

breast cancer model and this could be a great 

potential to perform photothermal 
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therapy[69]. A versatile multi-

functionalised nanodevice based on 

orthogonal bioconjugation has been 

successfully developed by Cano-Cortes et 

al. for triple-negative breast cancer. In vitro 

and in vivo studies performed using 

doxorubicin incorporated in this nanodevice 

show improvement in the therapeutic index 

and fewer side effects as compared to free 

doxorubicin[70]. 

3.2 Neuronal Diseases and Disorders 

3.2.1 Alzheimer’s Disease 

Alzheimer’s disease (AD) is a chronic 

neurodegenerative disease amongst the 

elderly characterised by progressive loss of 

neurons in the brain, leading to cognitive 

impairment. AD is the most common form 

of dementia, accounting between 60% to 

80% of reported dementia cases. In 2019, 

over 50 million of the populationsuffered 

from dementia worldwide and the number is 

expected to be tripled by 2050[71].Amyloid 

beta (Aβ) peptide is the major fibrillar 

component of plaque deposits found in the 

brains of AD patients. Conventional AD 

pharmacotherapy remains symptomatic 

because effective curative therapy has not 

been developed despite the high medical 

demand and intensive research on the 

treatment of AD[72]. The failure in the 

development of new anti-AD drugs is 

mainly due to the physicochemical 

properties of drugs that make the drugs 

difficult to cross the blood-brain barrier 

(BBB), resulting in sub-optimal therapeutic 

concentrations in the central nervous system 

(CNS)[73]. Thus, it is crucial to take these 

considerations into account while designing 

and developing potential drug delivery 

systems for the early detection and treatment 

of AD[73].  

Curcumin is a plant-derived compound 

with anti-oxidant and anti-amyloid 

properties beneficial for AD treatment while 

dexamethasone has been reported to reduce 

cerebrovascular inflammation and the 

incidence of cerebral haemorrhages [74,75]. 

Jaruszewski et al., developed curcumin-and 

dexamethasone-loaded chitosan 

nanoparticles conjugated with gadolinium-

diethylene triamine penta acetic acid (Gd-

DTPA) and IgG 4.1, an anti-amyloid 

antibody. It was proven that IgG4.1 on the 

surface of nanoparticles played a role in the 

specific targeting of cerebrovascular 

amyloid (CVA) deposits[76].Excellent 

distribution to the target CVA and brain 

vasculature was demonstrated, thus enabling 

SPECT and MRI specific to the CVA in the 

brain [76]. In a study by Mathew et al., 

curcumin loaded-poly (lactic-co-glycolic 

acid) (PLGA) nanoparticles conjugated with 

Tet-1 peptide are proven to exhibit anti-

oxidant activity and succeed in destroying 

amyloid aggregates. Tet-1 peptide was 
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found to facilitate specific targeting on 

motor neurons and retrograde delivery to 

neuronal cells [77]. 

Besides, a study was conducted on the 

immobilisation of anti-Aβ monoclonal 

antibodies (aAβmAb) to fluorescent iron 

oxide nanoparticles loaded with BAM 10 for 

theranostic applications of AD. A five-folds 

higher inhibition of Aβ40 fibrillation and a 

reduction in the Aβ40-induced cytotoxicity 

were observed with the BAM 10-conjugated 

nanoparticles compared to the free BAM 

10[78].Aβ40 fibrils can be specifically 

detected ex vivo using MRI and fluorescence 

imaging owing to the selective labelling of 

the fibrils with the nanoparticles[78]. 

Targeted dual-functional nanoparticles 

composed of lectin-modified PEG-PLGA 

nanoparticles were developed for treating 

AD[79]. A ligand composed of 12 amino 

acids, TGNYKALHPHNG (TGN) and a D-

enantiomeric peptide, QSHYRHISPAQV 

(QSH) are the two targeting peptides of 

PEG-PLGA nanoparticles[79]. TGN acts as 

the first-order targeting ligand by targeting 

at BBB whereas QSH is used due to its high 

affinity towards a component of amyloid 

plaques, Aβ42 peptides that are found in all 

AD patients [79]. 

3.2.2 Epilepsy  

Epilepsy is a chronic neurological 

disorder characterised by unprovoked 

recurrent seizures. It was reported that the 

available antiepileptic drugs (AEDs) are 

ineffective in more than 30% of patients 

[80]. Thus, novel strategies are required for 

the treatment of epilepsy. An example is the 

modulation of the epilepsy phenotype by 

administrating miRNA mimic or inhibitory 

synthetic oligonucleotides[81,82]. Iori et al., 

used a mimic miRNA-146a injection to 

impair the molecular pathway of IL-1 

receptor/Toll-like receptor (IL-1R1/TLR4), 

thus resulting in the prevention of disease 

progression and a significant decrease in the 

recurrence of chronic seizure 

recurrence[81]. In addition, the 

administration of anti-miRNA-146a into 

pilocarpine-induced mice models of 

temporal lobe epilepsy (TLE) through the 

intranasal route has been shown to reduce 

the percentage of mice with seizure onset 

and increase the latency of seizures [82]. 

Thus, it can be speculated that in the initial 

phase, mimic miRNA-146 is effective in the 

silencing of major transducers of the acute 

response, leading to a reduction in the 

epilepsy manifestation. In the second phase 

where activation of the complement system 

occurs, anti-miRNA-146 is useful to reduce 

the neuroinflammation associated with the 

epilepsy pathology by activating a repressor 

of the complement system [81,82].  

Encapsulation of AEDs within 

nanoparticles is a potential approach for AD 
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management. A flexible chip consisting of 

drug-carrying core-shell magnetic 

nanoparticles and electrically conductive 

polyethylene terephthalate substrate was 

developed. The release of ethosuximide 

(ESM), an AED, from the chip is triggered 

by the application of a magnetic field [83]. 

In vivo studies showed that the spike-wave 

discharge was reduced upon drug release, 

thus reducing the occurrence of seizures in 

epileptic patients [83].Besides, polymeric 

nanoparticles are used owing to the high 

stability in biological fluids[84]. The 

nanoparticles incorporated with either 

hydrophilic or hydrophobic drugs are mostly 

transported across the BBB by desorption 

and diffusion, or through the degradation of 

polymers. The rapid efficient transport of 

polymeric nanoparticles across the BBB 

helps in reducing the dosage frequency [84]. 

Next, the potential of nanogels as a depot 

drug delivery system for AD treatment has 

been demonstrated in a study[85].The spike-

wave discharge was successfully suppressed 

by ESM-loaded nanogels and clearance of 

gels from the site of administration can be 

visualised using MRI [85]. 

3.2.3 Parkinson’s Disease 

Parkinson’s disease (PD) is associated 

with a progressive loss of dopaminergic 

neurons in the substantia nigra, leading to 

motor and neurological symptoms such as 

postural imbalance, tremors, muscle rigidity 

and bradykinesia[86]. The exact 

pathophysiology remains unknown but it is 

suggested that various genetic and 

environmental factors contribute to the 

progression of PD[87].The formation and 

accumulation of alpha-(α)-synuclein, the 

main component in Lewy bodies, are seen in 

most PD patients[87].Recently, novel 

nanoparticle-based approaches are used for 

the diagnosis and treatment of PD. A study 

performed by McDonagh et al. has shown 

that manganese oxide nanoparticles loaded 

with levodopa (L-DOPA) causes manganese 

ions and L-DOPA to be released gradually 

from the nanocarriers, enabling a sustained 

drug release for PD treatment [88]. Positive 

contrast in MRI given by the manganese 

ions is beneficial for the diagnosis of PD 

[88]. Other than that, the intranasal 

administration of odorranalectin (OL)-

conjugated nanoparticles has been reported 

as a nose-to-brain drug delivery system with 

fewer immunogenic reactions in PD 

patients[89]. Also, OL modification can be 

enhanced by the pairing of a 

macromolecular model drug, urocortin 

peptide, with the nanoparticles. The 

increased OL modification helps in the 

enhancement of the therapeutic effects of 

urocortin-loaded nanoparticles in the 

management of PD [89].Hu et al. reported a 

biodegradable drug delivery system using 

lactoferrin (LF)-conjugated PEG-PLGA 
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nanoparticles loaded with coumarin-6. It has 

been demonstrated that the accumulation of 

LF-conjugated nanoparticles in mice brain 

cell line was more pronounced compared to 

unconjugated nanoparticles [90]. Owing to 

an additional clathrin-mediated endocytosis 

process, LF-conjugated nanoparticles were 

also associated with an increase in the cell 

uptake [90]. Thus, it can be concluded that 

nanoparticles are promising brain drug 

delivery systems for PD with reasonable 

toxicity.  

3.2.4 Huntington’s Disease 

Huntington’s disease (HD) is a fatal 

neurodegenerative disorder characterised by 

involuntary choreiform movements, mood 

changes, oxidative damage and 

transcriptional dysfunction. HD mainly 

affects the cortical and striatal medium spiny 

neurons[91]. The exact pathological 

pathway for HD remains unknown but it 

usually involves mitochondrial dysfunction. 

Thus, successful treatment of HD involves 

the resolve of mitochondrial 

impairments[91]. Solid lipid nanoparticles 

(SLNs) encapsulated with curcumin have 

been utilised in rats with 3-nitropropionic 

acid (3-NP)-induced HD. The results 

revealed marked elevations in the 

cytochrome levels and the activity of 

mitochondrial complexes, accompanied by 

restoration of glutathione levels and activity 

of superoxide dismutase, in rats treated with 

C-SLNs [92]. Better neuromotor 

coordination was observed in rats treated 

with C-SLNs compared to untreated rats 

[92]. In addition, the administration 

of rosmarinic acid (RA)-loaded SLNs 

through nasal route is useful in treating HD 

[93]. Nasal administration is preferred as it 

minimises the unnecessary transport and 

metabolism in other body parts as compared 

to intravenous (IV) administration. 

Improvement in behavioural abnormalities 

and attenuation of oxidative stress have been 

seen in HD patients treated with RA-loaded 

SLNs [93].  

3.2.5 Post-traumatic Stress Disorders 

Post-traumatic stress disorder (PTSD) is 

a trauma- and stressor-related disorder 

developed after traumatic experiences, 

characterised by the persistence of at least 

one of the symptoms from the four domains 

including avoidance, arousal and reactivity, 

intrusion, as well as negative mood and 

cognitive alterations for a month or 

longer[94]. However, only 10% to 20% of 

individuals will develop PTSD after 

trauma[95]. Once PTSD is appropriately 

diagnosed, the selection of treatments 

should be guided by the established 

guidelines or current research literature 

[96].Serotonin, also known as 5-

hydroxytryptamine (5-HT), has a 
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theranostic potential in PTSD due to its role 

in the control of mood and impulse. 

Empirical demonstrations of abnormalities 

in 5-HT function were found in most PTSD 

patients. However, there is limited evidence 

on the clinical efficacy of selective serotonin 

reuptake inhibitors (SSRIs) andserotonin-

norepinephrine reuptake inhibitors (SNRIs). 

In a study performed by MacNamaraet al., 

reappraisal-related activations in the left 

dorsolateral prefrontal cortex (DL-PFC) and 

supplementary motor area (SMA) were 

significantly increased in patients treated 

with paroxetine, an SSRI, without 

alterations in the amygdala[97]. DL-PFC 

has been proven to be associated with the 

initiation and maintenance of emotion 

regulation while SMA plays a role in the 

implementation of DL-PFC-initiated 

emotion regulatory effects [98]. Shin et al. 

demonstrated the potential use of SSRIs in 

PTSD patients by decreasing the amygdala 

hyperactivity [99]. 

Trauma-focused treatments (TFTs) 

including prolonged exposure therapy (PE) 

and cognitive processing therapy (CPT) are 

widely used in treating PTSD.PE consists of 

10 sessions in which patients are exposed to 

images associated with an index trauma and 

real-life stimuli that can be endured and 

prevented with distress. PE has been shown 

to help in the prevention and reduction of 

anxiety as well as an accurate appraisal of 

the traumatic experience[100]. On the other 

hand, CPT requires patients to provide a 

written narrative of the index trauma. The 

maladaptive cognitions reinforced or formed 

by the trauma are examined and 

restructured. CPT has been proven effective 

in the reappraisal of maladaptive beliefs, 

thus providing a promising treatment for 

PTSD patients[101]. Both PE and CPT 

involve individualised and customised care 

depending on the needs, barriers and 

treatment goals of each patient [100,101].  

3.2.6 Amyloidosis  

Amyloidosis is a series of diseases 

presenting a hallmark of accretion of 

misfolded insoluble proteins termed 

amyloid fibrils. Amyloidosis is a prominent 

pathologic feature in numerous degenerative 

disorders [102]. Recently, QDs have been 

increasingly studied to be one of the 

potential theranostic tools for amyloidosis. 

QDs are nanoscale semiconductor crystals, 

offering tunable optical properties. QDs, a 

newly emerged class of nanomedicine, can 

potentially act as effective regulators of 

amyloidogenesis by inhibiting amyloid 

fibrils synthesis. There are two major groups 

of QDs, namely inorganic and organic QDs. 

Inorganic QDs comprise of a shielded metal 

crystalline core. Inorganic QDs inherently 

possess higher stability over organic QDs, 

indicating potentially longer shelf-lives 



Research Journal of Pharmacy and Life Sciences: Volume 2, Issue 2; May – August, 2021: Page 09 – 42 

27 

 

when applied as therapeutic drugs [103]. 

Biphenyl ether (BPE)-conjugated CdSe/ZnS 

core-shell QDs were shown to be involved 

in amyloid fibril disruption on preformed 

transthyretin fibres in vitro although at a 

relatively slower rate [104]. A study utilising 

a capping agent of dihydrolipoic acid 

(DHLA) conjugated with CdSe/ZnS core-

shell QDs demonstrated a favourable 

reduction in Aβ fibrillation [105]. Another 

study by Xiao et al. reported a 

concentration-dependent inhibition by N-

acetyl-L-cysteine capped CdTe core-shell 

QDs on the amyloid fibrillation through the 

formation of hydrogen bonds that further 

restrain the elongation for the fibrillation 

process [106]. Graphene QDs (GQDs) are 

organic QDs having low toxicity, high 

solvent solubility and are easier to be 

modified on the surface as compared to 

inorganic QDs. Studies have shown GQDs 

are effective Aβ peptides fibrillation and 

aggregation inhibitors [107,108].  

Besides inhibiting or disaggregating 

amyloids, QDs also are shown to exhibit 

excellent detection ability for amyloids. 

Conventional thioflavin probes have certain 

limitations including poor photostability and 

emission intensity. A nano-formulated red 

fluorescent QD encapsulated by 

benzotriazole was developed [109]. This 

combination of intense red fluorescence, 

multivalent binding and low overlapping 

emissions from the background emerges as 

a more superior detection tool as compared 

to conventional thioflavin dye [109]. The 

use of BPE-QDs shows remarkable 

fluorescence intensity and superior contrast 

for imaging over the conventional 

instrument [104]. These studies with 

different model combinations provide 

opportunities for further development of 

QDs amyloidosis treatment and detection. 

3.3 Atherosclerosis  

Atherosclerosis is the arterial lesion 

characterised by the hardening of arteries 

underlying the majority of cardiovascular 

diseases. Recently, an increasing number of 

preclinical studies have shown the potential 

of nanoparticles in the theranostics of 

atherosclerosis. Certain cells and receptors 

can be specifically targeted by 

nanoparticles.  One of the most extensively 

investigated targets is macrophages due to 

its abundance in the arterial plaque [110]. To 

date, there are multiple strategies utilised in 

the theranostics of atherosclerosis, namely 

photodynamic therapy (PDT) and 

photothermal therapy (PTT). PDT is a 

treatment mode utilising light to trigger the 

activation of photosensitisers, producing 

reactive oxygen species (ROS), singlet 

oxygen and radicals, which are ultimately 

cytotoxic to the macrophages. The activated 

photosensitisers are used for fluorescent 
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imaging. McCarthy et al., synthesised cross-

linked dextran-coated iron oxide (CLIO) 

nanoparticles aiming for macrophage 

ablation in atherosclerosis [111]. 

Additionally, CLIO was labelled with near-

infrared (NIR) fluorescent dye and a 

chlorine-based photosensitiser, making 

CLIO to be recognised by MRI and 

fluorescence imaging [111]. The use of 

chlorine-based photosensitiser in this study 

was unstable, therefore presenting another 

CLIO nanoparticles conjugated with a new 

chlorine-based photosensitiser, namely 

meso‐tetra(m‐hydroxyphenyl)chlorine 

(THPC) [112]. The results showed 

macrophage death after irradiating a 650 nm 

laser whereas fluorescence imaging 

displayed a build-up of CLIO-THPC in the 

atherosclerotic plaque.  

PTT utilises photo absorbers in 

generating hyperthermia in the disease area 

with the help of light irradiation. There are a 

few studies investigated for the development 

of gold nanorods (GNRs) for theranostics of 

atherosclerosis. A study employs 

conjugation of GNRs and macrophage-

targeting monoclonal antibodies (CD11b) as 

theranostic agents [113].Upon NIR 

irradiation, up to 80 % of targeted 

macrophages were killed and the fluorescent 

imaging portrayed a specific display of 

CD11b in macrophages. Similar studies 

have emerged including silica-coated 

GNRs. This study demonstrated the use of a 

novel imaging modality, namely combined 

intravascular ultrasound and photoacoustic 

(IVUS/IVPA) imaging for localised 

temperature control upon laser heating 

[114]. This unique imaging modality can 

assess the thermal damage and the dose 

delivered. In atherosclerotic plaques, there is 

a dense expression of integrin αvβ3 at 

activated endothelial cells and macrophages 

[115]. Thus, integrin αvβ3 could be a 

combined marker of both inflammation and 

angiogenesis in the lesions [116]. Winter et 

al. portrayed the use of  αvβ3-integrin-

targeted loaded with an anti-angiogenic drug 

called fumagillin[117]. The delivery of an 

anti-angiogenic drug, detection of early 

atherosclerosis, and non-invasive 

assessment of local response from treatment 

were illustrated. In their further study, the 

duration of anti-angiogenic activity from 

single low-dose αvβ3-integrin-targeted was 

investigated along with atorvastatin[118]. 

The results showed prolonged anti-

angiogenesis, suggesting possible 

incorporation of this novel theranostics into 

the standard clinical regimen. Most novel 

theranostic agents for atherosclerosis 

portray rapid and non-invasive diagnosis, 

simultaneously producing desired and 

specific outcomes in preclinical studies.  

3.4 Type 1 Diabetes Mellitus  
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Type 1 diabetes mellitus is a chronic 

auto-immune disease arising from the 

impairment of insulin synthesis from the 

pancreas. These patients often require life-

long exogenous insulin injections for 

glycaemic control. The RNA interference 

(RNAi) including siRNA and miRNA is the 

main nucleic-acid based are responsible for 

pancreatic beta cells normal function by 

regulating beta-cell growth, insulin 

production and roles of immune cells. All of 

which are involved in beta-cell dysfunction 

[119]. Theranostic application in RNAi 

involves delivery of oligonucleotides to beta 

cells and monitoring of the delivery in a non-

invasive manner. These non-invasive 

targeting and beta-cell imaging track the 

infiltrating diabetogenic T-lymphocytes, 

and monitor endogenous islet mass and 

changes throughout the diabetes progression 

including at the time of therapy [120]. 

Various imaging approaches including MRI, 

nuclear imaging and optical imaging could 

be used concomitantly with RNAi, utilising 

the diagnostic imaging probe to deliver 

therapeutic RNAi[119].Several strategies 

have been investigated for developing MRI 

probes that are specific to beta cells. 

Glucagon-like peptide 1 receptor (GLP-1R) 

targeting superparamagnetic iron oxide 

(SPIO) nanoparticles are one of the 

promising probes for theranostic MRI of 

endogenous islets [121]. Zhang et al. 

developed targeted SPIO with GLP-1 

analog-exendin-4 acting as the ligand. 

Importantly, the results showed that SPIO-

exendin4 bind specifically to and get 

internalised by GLP-1R-expressing INS-1 

cells. This suggests that SPIO-exendin4 

could be a molecularly-targeted imaging 

agent for in vivo insulinoma imaging. GLP-

1 and its analogues have been widely 

recognised in the treatment of diabetes, the 

potential of the theranostic approach from 

probes containing GLP-1 analogue 

conjugates cannot be underestimated [122]. 

Immune rejection of transplanted islet 

can lead to graft damage due to T 

lymphocyte-mediated immune response. 

Thus, early detection of this immune 

rejection is required. A study developed a 

theranostic model with magnetic 

nanoparticles (MNs) conjugated with 

siRNA targeting beta-2 microglobulin 

(B2M). The MNs deliver the siRNA 

molecule and also provides imaging[123]. 

The result demonstrated a remarkably 

slower rate of graft volume loss induced by 

immune rejection in mice with transplanted 

MN-siB2M-treated islets as compared to 

control. Another study showed improved 

mortality in treatment of patients with 

transplanted pancreatic islets with 

theranostic targeting the caspase-3 gene 

[124]. Downregulation of this gene could 

protect the transplanted islets from apoptosis 

[124,125]. Similarly, this study also utilised 
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in vivo and in vitro use of MNs as imaging 

conjugated with siRNA targeting caspase-3. 

The grafts loaded with MN-siCaspase-3 

presented enhanced insulin secretion and 

decreased apoptosis. In both in vitro and in 

vivo, MN-siCaspase-3 portrayed potential 

protection on islets [124,125]. These two 

models could be utilised for further 

investigation as theranostic, aiming to 

improve clinical outcomes from islet 

transplantation.To date, none of the imaging 

strategies can provide all requirements for 

theranostic imaging in type 1 diabetes 

mellitus. These requirements include 

specifically imaging beta-cell mass, 

monitoring transplanted islets, and 

inflammation occurring in islets. 

CONCLUSIONS  

In conclusion, the emerging theranostics 

approach has become a predictive, 

preventive, personalised and participatory 

medicine or “P4 medicine” in the healthcare 

management. It has the potential to improve 

the quality of clinical care and treatments. 

Ultimately, it helps to identify the right drug 

for the right patient at the right time, thus 

saving treatment costs. In other words, 

theranostics provide successful treatments 

which can be specific and cost-effective.  
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