ISSN 2582-6441 [Online] RESEARCH JOURNAL OF PHARMACY AND LIFE SCIENCES

LET OTHERS KNOW YOUR RESEARCH
An International Peer Reviewed Journal

Research Article

Simultaneous Determination of Albendazole and Praziquantel Using Zero Order Spectrophotometry Absorbance correction Methods in Veterinary Pharmaceutical Formulation

Suddhasattya Dey ${ }^{1}$, Robina Khatun ${ }^{1}$, Rajiv Jash ${ }^{1}$, Shreya Shah ${ }^{2}$, Pankaj Dagur ${ }^{2}$, Padmacharan Behera*3 ${ }^{* 3}$, Sourav Khawas ${ }^{3}$ and Anirban Nandi ${ }^{4}$
${ }^{1}$ Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, West Bengal713212, India
${ }^{2}$ Sigma Institute of Pharmacy, Bakrol, Vadodara, Gujrat, India
${ }^{3}$ Jharkhand Rai University, Ratu Rd, Kamre, Ranchi Jharkhand 835222
${ }^{4}$ Bengal College Of Pharmaceutical Technology Dubrajpur, birbhum, West Bengal

ARTICLE INFO

Date of submission: 15-06-2022
Date of Revision: 21-06-2022
Date of acceptance: 07-07-2022
Key Words:
Albendazole, Praziquantel, UVVIS, Absorbance Correction
Method, LOD

Abstract

The present study describes a simple, accurate, precise and cost effective UV-VIS Spectrophotometric method for the estimation of albendazole (ABZ) and praziquantel (PZQ) by absorbance correction method. The simultaneous determination of albendazole (ABZ) and praziquantel (PZQ) was performed by absorbance correction method using two different wavelengths i.e. $217 \mathrm{~nm} \&$ 295.4nm. Both the drugs were dissolved in methanol for estimation. A linear response was observed in the range of 4$14 \mu \mathrm{~g} / \mathrm{ml}$ with a regression coefficient of 0.999 . The method was then validated for different parameters as per the ICH (International Conference for Harmonization) guidelines. The detection limits (LOD $=4 \mu \mathrm{~g} / \mathrm{ml}$ for both the drugs) for absorbance correction method were determined and presented the best analytical features. The recoveries of ABZ and PZQ from the synthetic samples were near to $100 \pm 5 \%$. The methods were applied in veterinary pharmaceutical formulation whose mass ratio ABZ: PZQ is $12: 1$; the results obtained were according to nominal content.

© 2020 Published by HOMES on behalf of RJPLS
This is an open access article under the CC-BY-NC-ND License.

*Corresponding author:

Padmacharan Behera
Jharkhand Rai University, Ratu Rd, Kamre, Ranchi Jharkhand - 835222
E-mail address: padma.behera@jru.edu.in, Tel: +91 7739897317.

1. Introduction

The antiparasitic drugs are widely used in veterinary practice and human therapy. The antihelminthics are an important type of these drugs used in cattle and pets, bringing benefit and improved quality of life to such animals. ${ }^{(1)}$ An important example of a disease treated with these drugs is helminthiases, a common parasitic disease of great economical and public health importance. Since the antihelminthic spectra of most drugs used for treatment is limited, combinations of more than one active ingredient are required to control helminthic infections effectively. In this context, albendazole, methyl 5-(propylthio)-2- benzimidazole carbamate (ABZ) (Fig. 1a), is an antihelminthic drug, it is active against most of the nematode worms and some of the cestode worms in humans and animals, and it acts by inhibiting fumarate reductase and the microtubular polymerization of the parasite. ${ }^{(2)} \quad$ Praziquantel, 2-cyclohexylcarbonyl-

1,2,3,6,7,11bhexahydro- 4h-pyrazino(2,1a) isoquinolin-4-one (PZQ) (Fig. 1b), acts on the parasite, increasing the permeability to calcium ions causing contractions and vacuolization. The mix of both drugs is efficiently used in veterinary treatment of parasitic diseases. Many publications describe the determination of ABZ and

PZQ in pharmaceutical formulations. Individual and simultaneous determination with other drugs are possible by FIA using UV-detection and HPLC method in suspensions, ${ }^{(3)}$ adsorptive stripping voltammetry (ASV) and linear sweep voltammetry (LSV), square-wave voltammetry (SWV), differential pulse voltammetry (DPV), ${ }^{(4-5)}$ Visspectrophotometry, ${ }^{(6-9)} \quad$ HPLC, ${ }^{(10,11)}$ derivative UV-spectrophotometry, ${ }^{(12-13)}$ GLC ${ }^{(14)}$ and PMR spectrometry. ${ }^{(15)}$ In biological samples for individuals, simultaneous determinations with other drugs and metabolites have been reported by: HPLC, ${ }^{(16-22)}$ LC-TMS, ${ }^{(23-24)}$ LC-ESSM, ${ }^{(25)}$ nonaqueous capillary electrophoresis, ${ }^{(26)} \quad \operatorname{IR}^{(27)} \quad$ and fluorometry. ${ }^{(28-29)}$

A newer dose regiment was developed in combination of $A B Z$ and PZQ for treatment of helminthes and the estimation was also been performed by RP-HPLC in rat plasma. ${ }^{(30)}$ Classical least squares (CLS) analysis is one of the simplest multivariate methods and is easy to perform, although its results are not very accurate in the quantification of mixtures when the analyzed spectra have significant overlapping. ${ }^{(31)}$ Second derivative spectroscopic method was developed for the estimation in Veterinary Pharmaceutical Formulation . ${ }^{(32)}$ On the
other hand, PCR and PLS regression have been used more successfully in quantification of those types of samples, although their use presents more complications than CLS and second derivative spectrophotometry (SDS). The aim of this work is to develop different mathematical approaches for the simultaneous determination of ABZ and PZQ in veterinary pharmaceutical formulation.

Fig. 1.Chemical structures of Albendazole

Fig. 2.Chemical structures of Praziquantel

2. Experimental

2.1. Materials and Solutions

Albendazole (Fig. 1) was obtained from Mercury Pharmaceutical Ltd, Vadodara, Gujarat, India. Praziquantel (Fig. 2) was obtained from Micro Labs Ltd., Goa. The solvent used was methanol which was of AR grade, purchased from SD Fine Chemicals Limited, India and double distilled water.

2.2. Instrumentation:

The instrument used for the present study was a UV-Vis double beam spectrophotometer (model 2080, Analytical Technological Limited) with 1 cm matched pair quartz cell.

2.3. Method:

2.3.1. Solubility Test:

Solubility test for the drug Albendazole and Praziquantel was performed by using various solvents. The solvents include water, methanol, ethanol, acetonitrile, 0.1 N hydrochloric acid $(0.1 \mathrm{~N} \mathrm{HCl}), 0.1 \mathrm{~N}$ sodium hydroxide (0.1 N NaOH), DMF, and chloroform.

Solvent: Methanol

2.3.2. Preparation of stock solution of

 Albendazole and Praziquantal $(1000 \mu \mathrm{~g} / \mathrm{ml}): 25 \mathrm{mg}$ of both the drugs were weighed and transferred to a 25 ml volumetric flask. 15 ml of diluent was added and the solution is sonicated for 15 min . Volume is made up to the mark with diluent to obtain stock solution of $1000 \mu \mathrm{~g} / \mathrm{ml}$.2.3.3. Preparation of working standard solution Albendazole and Praziquantal $(100 \mu \mathrm{~g} / \mathrm{ml}): 2.5 \mathrm{ml}$ of stock solution was withdrawn and transferred to 25 ml volumetric flask, volume is made upto the mark with Solvent to get the working standard solution of $100 \mu \mathrm{~g} / \mathrm{ml}$.
2.3.4. Absorbance Correction Method:

Each working standard solution was scanned between the range $200-400 \mathrm{~nm}$ in 1 cm cell against blank and the overlain spectra was recorded (Fig.3). Albendazole shows two absorbance maxima ($\lambda \max$) at 295.4 nm and 215.8 nm wavelengths, whereas Praziquantel shows no absorbance maxima (λ max), but it shows Absorbance at 217.0 nm . (Fig.3). Overlain spectra of

Albendazole (ABZ) and Praziquantel (PRQ). The calibration curves for ABZ and PRQ were prepared with in the concentration range of $4-14 \mu \mathrm{~g} / \mathrm{ml}$ at selected wavelengths by diluting aliquot portions of standard stock solution of each drug. The plots of Beer's law limit are shown in (Fig.4, 5, \& 6)

Fig: 3- Selection of detection wavelength for ABZ \& PRQ at 295.4 nm and 217.0 nm respectively; \qquad : Albendazole (ABZ); \qquad : Praziquantel (PRQ); \qquad : Mixture

Fig: 4- Overlay Spectra of linearity of Albendazole

Fig: 5-Overlay Spectra of linearity of Praziquantel

Fig: 6- Overlay Spectra of linearity of Albendazole and Praziquantel

2.4. UV Method Development

2.4.1. Preparation of Stock Solution:

Standard stock solution of Albendazole and praziquantel was prepared by dissolving individually both the drug (10 mg) of in 10 ml of Methanol which gives $1000 \mu \mathrm{~g} / \mathrm{ml}$. One ml of this stock Solution was taken and was diluted up to 10 ml by using methanol (solvent) to
produce a concentration of $100 \mu \mathrm{~g} / \mathrm{ml}$ solution.

2.4.2. Preparation of Working Solution:

From the above stock solution 1 ml was transferred into 10 ml volumetric flask and volume was made up to the mark with methanol to make $10 \mu \mathrm{~g} / \mathrm{ml}$.

2.4.3. Determination of $\boldsymbol{\lambda} \max$:

Then the above working sample solution $(10 \mu \mathrm{~g} / \mathrm{ml})$ was scanned with UV-Vis Spectrophotometer in the range 400200 nm against Methanol as blank and the wavelength corresponding to absorbance was noted For Albendazole at 295.4 nm and Praziquantel at 217 nm for Absorbance Correction Method. (Fig-3)

2.4.4. Preparation of Calibration Curve:

 From the above stock solution $(100 \mu \mathrm{~g} / \mathrm{ml})$ further dilution were made and the volume was make up to 10 ml using Methanol to produce $4 \mu \mathrm{~g} / \mathrm{ml}, 6 \mu \mathrm{~g} / \mathrm{ml}, 8 \mu \mathrm{~g} / \mathrm{ml}, 10 \mu \mathrm{~g} / \mathrm{ml}$ $12 \mu \mathrm{~g} / \mathrm{ml}$ and $14 \mu \mathrm{~g} / \mathrm{ml}$ solutions respectively. Then the construction of calibration curve was showed a straight line (Fig- 7, 8, 9, $10 \& 11$). The correlation coefficient was found to be 0.999 for Absorbance correction method.

Fig: 7- Calibration Curve of "Praziquantel" at 217 nm

Fig: 8- Calibration Curve of "Albendazole" at 217 nm

Fig: 9- Calibration Curve of "Abendazole" at 295.4 nm

Fig: 10- Calibration Curve of "Mixture" at 217.0nm

Fig: 11- Calibration Curve of "Mixture" at 295.4nm

2.5. Method Validation:

Validation is a process of establishing documented evidence, which provides a high degree of assurance that a specific activity will consistently produce a desired result or product meeting its predetermined specifications and quality characteristics. The validation for UV method development was performed using parameters like Linearity, Accuracy, Precision, Robustness, Ruggedness, and Limit of detection (LOD), Limit of quantification (LOQ) ${ }^{(33)}$

2.5.1. Linearity

The linearity was tested for the concentration range of $4,6,8,10,12$, $14 \mu \mathrm{~g} / \mathrm{ml}$ for ABZ \& PRQ. The calibration curve was constructed and evaluated by its coefficient of determination $\left(\mathrm{r}^{2}\right)$. The calibration plot (concentration of PRQ
versus Absorbance of PRQ at 217 nm \& concentration of ABZ versus Absorbance of ABZ at 295.4 nm .) was generated by replicate analysis $(n=10)$ at all concentration levels and the linear relationship was evaluated using the least square method within Microsoft Excel® program. For minimum error with precise, concise and accurate data 10 different concentration were been taken which gave a wide range for linearity. The coefficient of determination (r^{2}) for ABZ \& PRQ were 0.999 \& 0.999 for ABZ \& PRQ and given in (Fig.10, 11).

2.5.2. Accuracy:

Accuracy of the method was determined by replicate analysis of three sets of samples spiked with three different levels of ABZ \& PRQ in level $80 \%, 100 \%$ \& 120% and comparing the difference between spiked value (theoretical value) and that actually found value.

2.5.3. Precision:

The precision of the method based on within-day repeatability was determined by replicate analysis of three sets of samples spiked with three different concentrations of $\mathrm{ABZ} \& \mathrm{PRQ}$ (4, 10and $14 \mu \mathrm{~g} / \mathrm{ml}$). The reproducibility (day-to-day variation) of the method was validated using the same concentration range as described above, but only a single determination of each concentration was
made on three different days. Relative standard deviation (R.S.D.) were calculated from the ratios of standard deviation (S.D.) to the mean and expressed as percentage.

2.5.4. Specificity:

Specificity study was performed by analyzing standard solution in the presence of an excipient to find was there any interference of excipients in \% recovery of ABZ \& PRQ. Amount of ABZ \& PRQ was spiked with $50 \%, 100 \%$, and 150% of excipient (talc) and the sample was analyzed for ABZ \& PRQ recovery UVVIS Spectrophotometer.

3. Result and Discussion

3.1. Calibration Curve:

Linearity of response for $A B Z$ and PRQ for determination of both of them in Single as well as synthetic mixture, by preparing a stock solution and suitably diluted to achieve concentration of about $4,6,8,10$, $12,14 \mu \mathrm{~g} / \mathrm{ml}$. Value of Coefficient of determination (r^{2}), slope and intercept were $\mathrm{y}=0.049 \mathrm{x}-0.004, \mathrm{R}^{2}=0.999$ at 217.0 nm for PRQ in bulk, $\mathrm{y}=0.102 \mathrm{x}+$ $0.012, \mathrm{R}^{2}=0.999$ at 217.0 nm for ABZ in bulk, $\mathrm{y}=0.036 \mathrm{x}-0.003, \mathrm{R}^{2}=0.999$ at
295.4 nm for ABZ in bulk, $\mathrm{y}=0.160 \mathrm{x}+$ $0.002, \mathrm{R}^{2}=0.999$ at 217.0 nm in synthetic mixture, $\mathrm{y}=0.039 \mathrm{x}-0.005, \mathrm{R}^{2}=0.999$ at 295.4 nm in synthetic mixture. The linear regression data from the calibration curve indicate that the response is linear over the concentration range studied for both the drug. So it can be apply for determination of $A B Z$ and $P R Q$ in synthetic mixture.

3.2. Analytical method validation:

3.2.1. Linearity:

The linearity was tested for the concentration range of $4,6,8,10,12$, $14 \mu \mathrm{~g} / \mathrm{ml}$. and the calibration curve was constructed and evaluated by its correlation coefficient. The linear relationship was evaluated using the least square method within Microsoft Excel® program. The coefficient of determination $\left(\mathrm{r}^{2}\right)$ for both ABZ and PRQ was 0.999 given in (Table 1, 2, 3, 4, 5, \& 6) and (Fig. 3, 4, \& 5)

Table No.: 1: Linearity data of Praziquantel at 217.0

Conc.	Abs.	Conc.	Conc.	Absorptivity	Avg. $(\mu g / m l)$	$(n=5)$

	(nm)				$\boldsymbol{g m} / \mathbf{1 0 0 \boldsymbol { m l }}$	0.0496
4	0.1958	4.0416	0.00040	484.455		
6	0.2874	5.8884	0.00058	488.075		Intercept:
8	0.3968	8.0940	0.00080	490.235		0.0046
10	0.4882	9.9368	0.00099	491.304	489.811	
12	0.5959	12.1081	0.00121	492.146		$\mathbf{r}^{2}:$
14	0.687	13.9448	0.00139	492.653		0.9994

Table No.: 2: Linearity data of Albendazole at 217.0 nm

$\begin{aligned} & \text { Conc. } \\ & (\mu \mathrm{g} / \mathrm{ml}) \end{aligned}$	Abs. $(n=5)$ (nm)	Conc. found ($\mu \mathrm{g} / \mathrm{ml}$)	Conc. gm/100ml	Absoptivity gm/100ml	Avg. absorptivity gm/100ml	Calz	$\begin{aligned} & \hline \text { Slope: } \\ & 0.1110 \end{aligned}$
4	0.447	3.986	0.00039	1122.793		0.0004	Intercept
6	0.662	5.923	0.00059	1118.609		0.0005	:
8	0.912	8.172	0.00081	1116.240		0.0008	0.0051
10	1.103	9.893	0.00098	1115.154	1116.777	0.0009	
12	1.351	12.12	0.00121	1114.204		0.0012	\mathbf{r}^{2} :
14	1.551	13.92	0.00139	1113.661		0.0013	0.9990

Table No.: 3: Linearity data of Albendazole at 295.4 nm

$\begin{gathered} \text { Conc. } \\ (\mu g / m l) \end{gathered}$	Abs. $(n=5)$ (nm)	Conc. found ($\mu \mathrm{g} / \mathrm{ml}$)	Conc. gm/100ml	Absoptivity gm/100ml	Avg. absorptivity gm/100ml	Calz	$\begin{aligned} & \text { Slope: } \\ & 0.039 \end{aligned}$
4	0.1493	4.0336	0.00040	370.15		0.0003	Intercept:
6	0.2215	5.8918	0.00058	375.94		0.0005	-0.0074
8	0.3106	8.1853	0.00081	379.45		0.0008	\mathbf{r}^{2} :
10	0.3754	9.8532	0.00098	380.98	378.68	0.0009	0.9990
12	0.4591	12.007	0.00120	382.33		0.0012	
14	0.5377	14.030	0.00140	383.22		0.0014	

Table No.: 4: Linearity data of Mixture at 217.0 nm

Conc. ($\mu \mathrm{g}$) ml)	$\begin{gathered} \text { Abs. } \\ (n=5) \\ (n m) \end{gathered}$	Conc. Found ($\mu \mathrm{g} / \mathrm{ml}$)	$\begin{gathered} \text { Conc. } \\ \text { gm/100 } \\ m l \end{gathered}$	Absorptivity	Avg. absorptivity	Alz-217 (absorptivit y^{*} Conc.)	$\begin{gathered} \hline \text { Cprq= (abs-alz } \\ \text { _absorptivity }{ }^{*} \\ \text { Conc.at217) } \\ \text { /pr__absorptivi } \\ \text { ty at } 217 \mathrm{~nm} \end{gathered}$	Slope: 0.160 Intercept: 0.002
4	0.654	4.06	0.0004	1611.2		0.447	0.00042	
6	0.953	5.92	0.00059	1609.6		0.662	0.00059	\mathbf{r}^{2} :
8	1.281	7.96	0.00079	1608.6		0.912	0.00075	0.999
10	1.601	9.95	0.00099	1608.1	1608.8	1.103	0.00101	
12	1.959	12.1	0.00121	1607.7		1.351	0.00124	
14	2.235	13.9	0.00139	1607.5		1.551	0.00139	

Table No.: 5: Linearity data of Mixture at 295.4 nm

Conc. $(\boldsymbol{\mu g} / \boldsymbol{m l})$	Abs.(n=5) $(\boldsymbol{n m})$	Conc. found	Conc. $\boldsymbol{g m} / \mathbf{1 0 0 m l}$	Absorptivity	Avg. absorptivity	Calz	Slope: 0.160
4	0.1592	4.142	0.00041	384.30		0.00040	
6	0.2296	5.915	0.00059	388.14		0.00058	Interce
8	0.3104	7.950	0.00079	390.43		0.00079	pt:
10	0.3893	9.937	0.00099	391.76	390.10	0.00099	-0.005
12	0.4678	11.91	0.00119	392.65		0.00119	
14	0.5565	14.14	0.00141	393.35		0.00142	$\mathbf{r}^{2}:$
						0.9990	

Table No.: 6: Spectral and statistical data for determination of Albendazole and Praziquantel by Absorbance Correction Method

Parameters	Drug (n=5)	
	Albendazole	Praziquantel

Absorption Wavelength	295.4 nm	217.0 nm
Linearity	$\mathrm{y}=0.039 \mathrm{x}-0.005$	$\mathrm{y}=0.160 \mathrm{x}+0.002$
Precision (\%RSD, NMT 2)	$0.2-0.9$	$0.2-0.5$
Repeatability	0.9	0.5
Intermediate precision	$0.2-0.7$	$0.2-1.7$
Accuracy (\%recovery \pm SD*)n=3	$99.79-101.95$	$99.09-102.19$
LOD $(\mu \mathrm{g} / \mathrm{ml})$	1.32	1.31
LOQ $(\mu \mathrm{g} / \mathrm{ml})$	4.0	4.0
Specificity	$100.74-101.24$	$100.15-102.49$
Assay $\left(\% \mathrm{w} / \mathrm{w} \pm \mathrm{SD}^{*}\right) \mathrm{n}=6$	100.176 ± 0.03	100.17 ± 0.060

3.2.2. Limit of detection and limit of quantification:

A limit of detection (LOD) and a limit of quantification (LOQ) were established based on the calibration curve parameters, according to the formula:

$$
\begin{aligned}
& \mathrm{LOD}=3.3 * \text { S.D/Slope and } \\
& \mathrm{LOQ}=10 * \text { S.D/Slope. (Table } 7)
\end{aligned}
$$

Table No.: 7: Determinations of LOD and LOQ.

Conc. $(\boldsymbol{\mu g} / \boldsymbol{m l})$	Abs. $\boldsymbol{a t}$ 217(nm)	Abs. at 295.4(nm)	At 217nm	At 295.4nm
4	0.6499	0.1542	Avg.: 0.6456	Avg.: 0.1555
4	0.6307	0.1569	S.D*:0.0105	S.D*: 0.0024
4	0.6339	0.1565	\%R.S.D:1.6344	\%R.S.D:
4	0.6505	0.1542	LOD: 1.31	1.51476
4	0.6539	0.1592	LOQ: 4.0	LOD: 1.32
4	0.6549	0.1525		LOQ: 4.0

3.2.3. Precision:

Precision was measured in terms of repeatability of measurement, performed by injecting the standard solution six times and measure the peak area. The RSD was found to be less than 2.0% for both ABZ \& PRQ. This shows that Precision of the method is satisfactory which is shown in (Table 8, 9, 10.)

Intermediate Precision: Intermediate Precision with expected results and express as percentage.

Table No.: 8: Determination of Repeatability

Conc. $(\boldsymbol{\mu g} / \boldsymbol{m l})$	Abs at 217.0nm	Avg.: 1.616	Abs at 295.4nm	Avg.: 0.387
$\mathbf{1 0}$	1.605	S. $\boldsymbol{D}: 0.009$	0.3839	S. $\boldsymbol{D}: 0.003$
$\mathbf{1 0}$	1.608	\%R.S.D.: 0.5854	0.3889	\%R.S.D.: 0.9012
$\mathbf{1 0}$	1.6236		0.3833	
$\mathbf{1 0}$	1.6299		0.3892	
$\mathbf{1 0}$	1.614		0.3922	
$\mathbf{1 0}$	1.6192		0.3855	

Table No.: 9: Determination of Intraday Precision

CONC. $\boldsymbol{\mu g} / \boldsymbol{m l}$)	Abs at 217.Onm		Abs at 295.4nm	
$\mathbf{4}$	0.3607	Avg:0.6383	0.1469	Avg:0.1475
$\mathbf{4}$	0.6339	S.D:0.010	0.1465	S.D:0.001
$\mathbf{4}$	0.6505	\%R.S.D:1.66	0.1492	\%R.S.D:0.98
$\mathbf{1 0}$	1.608	Avg: 1.6152	0.3839	Avg:0.3853
$\mathbf{1 0}$	1.6236	S.D:0.007	0.3889	S.D:0.003
$\mathbf{1 0}$	0.6141	\%R.S.D:0.48	0.3833	\%R.S.D:0.79
$\mathbf{1 4}$	2.2356	Avg.: 2.2271	0.5565	Avg.:0.5568
$\mathbf{1 4}$	2.2005	S.D:0.023	0.5579	S.D:0.0009
$\mathbf{1 4}$	2.2453	\%R.S.D:1.05	0.5562	\%R.S.D:0.16

Table No.: 10: Determination of Interday Precision

DAY	AT 217.0nm					AT 295.4nm			
	CONC. (MG/ML)	Avg.	S.D* (n=3)	\%RSD	CONC. (MG/ML)	Avg.	S.D* $(\mathbf{n = 3)}$	\%RSD	
1.	4	0.7759	0.0085	1.095	4	0.2030	0.0005	0.280	
	10	1.8008	0.0069	0.387	10	0.4761	0.001	0.366	
	14	2.4166	0.0403	1.670	14	0.6826	0.003	0.477	
2.	4	0.7769	0.0020	0.262	4	0.2111	0.001	0.521	
	10	1.8510	0.0068	0.368	10	0.4774	0.001	0.346	
	14	2.4672	0.0111	0.452	14	0.6728	0.002	0.311	
3.	4	0.7950	0.0140	1.763	4	0.2241	0.001	0.449	
	10	1.8760	0.0111	0.593	10	0.4961	0.004	0.941	
	14	2.5131	0.0100	0.399	14	0.6895	0.005	0.744	

3.2.4. Accuracy:

The accuracy of the method was determined by the recovery study carried out using standard addition method at three different concentration levels $80 \%, 100 \%$ \& 120%. Resulting spiked sample solutions were assayed in triplicate and the result obtained were compare with
expected result and express as percentage. The mean \% recovery of ABZ and PRQ was found to be in the range 99.79-101.95 \& 98.63-101.68 \% within the acceptance limit which is shown in (Table 11).

Table No.: 11: Accuracy (\% Recovery Study)

Analytes	No. of Obs.	Amt. Synthetic Mix. Add. ($\mu \mathrm{g} / \mathrm{ml}$)	$\%$ of Pure Drug Added		Total Amt. Found $(\mu \mathrm{g} / \mathrm{ml})$	\%Rec.	Mean \%Rec \pm S.D	$\begin{gathered} \hline \text { \%RS } \\ \text { D } \end{gathered}$
$\begin{gathered} \mathrm{ABZ} \\ (\mathbf{2 9 5 . 4 n m}) \end{gathered}$	S1	10	80\%	8	18.15	101.95	100.84	1.07
	S2	10	80\%	8	17.98	99.79	\pm	
	S3	10	80\%	8	18.06	100.79	1.08	
	S1	10	100\%	10	20.13	101.36	101.02	
	S2	10	100\%	10	20.07	100.7	\pm	0.33
	S3	10	100\%	10	20.1	101	0.33	
	S1	10	120\%	12	22.18	101.5	101.0	
	S2	10	120\%	12	22.08	100.69	\pm	0.43
	S3	10	120\%	12	22.09	100.89	0.43	
$\begin{gathered} \text { PRQ } \\ (217.0 \mathrm{~nm}) \end{gathered}$	S1	10	80\%	8	17.95	98.63	100.81	1.36
	S2	10	80\%	8	18.06	98.89	\pm	
	S3	10	80\%	8	18.17	100.43	1.37	
	S1	10	100\%	10	20.12	100.18	100.34	
	S2	10	100\%	10	19.98	100.1	\pm	0.76
	S3	10	100\%	10	19.99	101.68	0.76	
	S1	10	120\%	12	21.89	99.76	100.03	
	S2	10	120\%	12	21.95	98.96	\pm	1.22
	S3	10	120\%	12	22.17	101.51	1.23	

3.2.5. Specificity:

Specificity study was performed by analyzing standard solution in the presence of an excipient (talc). 10 mg each ABZ \& PRQ were spiked with 50% (5 mg), 100% (10 mg), and 150% (15 mg) of talc and the samples were analyzed for ABZ \& PRQ recovery by UVSpectrophotometer. Acceptance criteria for \% interference $<0.5 \%$. Interference was found to be $100.74-101.24 \%$ \& $100.15-102.49 \%$ for ABZ and PRQ respectively which is within the acceptance limit. Hence the excipients do not interfere with the estimation of drug which is shown in (Table 12).

Table No.: 12: Determination of \% Specificity

Analyte	No. of Obs.	Excipient amount added (mg)	Abs. (nm)	\% Recovery	Avg.\% Recovery	S.D*	\% R.S.D
	S1	5	1.2681	99.82			
	S2	5	1.2838	101.24	100.15	0.962	0.96
Praziquantel	S3	5	1.2634	99.40			
(10mg)	S1	10	1.3002	102.72			
	S2	10	1.3034	103.00	102.49	0.660	0.64
	S3	10	1.2894	101.74			
	S1	15	1.2645	99.50			
	S2	15	1.294	102.16	100.16	1.758	1.75
	S3	15	1.2571	98.83			
	S1	5	0.3254	102.46			
	S2	5	0.3239	101.96	101.24	1.702	1.68
	S3	5	0.3159	99.3			
(10mg)	S1	10	0.3259	102.63			
	S2	10	0.3216	10.20	101.15	1.500	1.48
	S3	10	0.3169	99.63			
	S1	15	0.3241	102.03			
	S2	15	0.3193	100.43	100.74	1.164	1.15
	S3	15	0.3173	99.76			

3.2.6. Sample Stock Solution for Assay

Ten tablets equivalent powdered were mixed in ratio ABZ : PRQ (300 mg : 25 mg). A quantity of synthetic mixture powder equivalent to 65 mg was taken in a 100 ml volumetric flask and diluent was added up to the mark. The solution was sonicated for 5 min . This solution was further diluted to obtain a concentration $12 \mu \mathrm{~g} / \mathrm{ml}$ for $\mathrm{ABZ} \& 5 \mu \mathrm{~g} / \mathrm{ml}$ for PRQ the result is summarized in (Table 13) and UV Spectra shown in (Fig 12).

Fig: 12- Assay of synthetic mixture.
Table No.: 13: Determination of \% Assay

Synthetic Mixture	Drug	Label claim mg/tablet	Conc. estimated (mg)	Mean Conc. Estimated (mg)	\%assay $(\mathbf{w} / \mathbf{w})^{ \pm}$ S.D*	\% RSD
Albendazole $+$	Albendazole	300mg	$\begin{aligned} & 298.79 \\ & 305.59 \\ & 301.24 \\ & 302.75 \\ & 298.03 \\ & 301.24 \end{aligned}$	301.27	$\begin{aligned} & 100.42 \\ & \pm 0.03 \end{aligned}$	0.902
Praziquantel	Praziquantel	25mg	$\begin{aligned} & \hline 24.46 \\ & 24.58 \\ & 25.23 \\ & 25.36 \\ & 25.40 \\ & 25.21 \end{aligned}$	25.044	$\begin{gathered} 100.17 \\ \pm 0.067 \end{gathered}$	1.639

4. Conclusion:

Linearity was determined at different concentration ABZ and PRQ shows linearity in the concentration range of 4-14 $\mu \mathrm{g} . \mathrm{mL}-1$ for ABZ and PRQ both. The percent recovery both the drugs are within the rage $95-105 \%$ which indicates the method is accurate. The $\%$ RSD values for precision are $<2.0 \%$. Method shows positive response to all validation parameter. The results of the synthetic mixture were found to be $100.42 \pm 0.03 \%$ and $100.17 \pm 0.067 \%$ for ABZ and PRQ respectively. The proposed Absorbance Correction method found to be simple,
rapid and sensitive. Therefore, validated UV spectrophotometric method will play a role for determination of ABZ and PRQ in their combined dosage formulation.

5. Acknowledgement:

The authors are grateful to Mercury Labs Ltd., Vadodara, India, and Micro Labs Ltd., Goa, India for providing gift samples of Albendazole and Praziquantel respectively.

References

1. Campbell WC. Benzimidazoles: veterinary uses. Parasitology Today. 1990 Apr 1;6(4):130-3.
2. Barragry T. Anthelmintics-review Part II. New Zealand veterinary journal. 1984 Nov 1;32(11):191-9.T.
3. Atkoşar Z, Altiokka G. The Determination of Albendazole by Flow Injection Analysis Method Using UV-Detection and HPLC Method in Suspensions. Journal of liquid chromatography \& related technologies. 2006 Apr 1;29(6):84956.
4. Abu Zuhri AZ, Hussein AI, Musmar M, Yaish S. Adsorptive stripping voltammetric determination of albendazole at a hanging mercury drop electrode. 2008 Feb,32:15, 29652975
5. de Oliveira MF, Stradiotto NR. Voltammetric assay of albendazole in pharmaceutical dosage forms. Analytical letters. 2001 Feb 4;34(3):377-87.
6. Zhao G, LI H, Liu Y, Wang Y. Application of Charge Transfer Reaction BetweenAlbendazole and Chloranilic Acid. Chinese Journal of Analytical Chemistry. 2001:400-2.
7. Fregonezi-Nery MM, Baracat MM, Kedor-Hackmann ÉR, Pinheiro RM. Determination of albendazole in oral
suspension. Analytical letters. 2001 May 31;34(8):1255-63.
8. Basavaiah K, Prameela HC. Titrimetric and spectrophotometric determination of albendazole with bromate and methyl orange. Oxidation Communications. 2004 Jan 1;27(1):177-85.
9. Saleh H, Schnekenburger J. Colorimetric method for the quantitative determination of the antibilharzial drug praziquantel and its application to pharmaceutical preparations. Analyst. 1992;117(1):87-92.
10. Van Tonder EC, de Villiers MM, Handford JS, Malan CE, du Preez JL. Simple, robust and accurate highperformance liquid chromatography method for the analysis of several anthelmintics in veterinary formulations. Journal of Chromatography A. 1996 Apr 5;729(1-2):267-72.
11. Bonato PS, De Oliveira AR, De Santana FJ, Fernandes BJ, Lanchote VL, Gonzalez AE, Garcia HH, Takayanagui OM. Simultaneous determination of albendazole metabolites, praziquantel and its metabolite in plasma by highperformance liquid chromatographyelectrospray mass spectrometry.

Journal of pharmaceutical and biomedical analysis. 2007 Jun 28;44(2):558-63.
12. Wu Y, Liu F, Li C. First order derivative UV-spectrophotometric determination of albendazole in tablets. Zhongguo Yiyao Gongye Zazhi. 1991;22:75-7.
13. Yuan X. Derivative spectroscopic assay of praziquantel tablets. Yaowu Fenxi Zazhi. 1985;5:120-.
14. Saleh H, Schnekenburger J. Determination of praziquantel and of praziquantel in tablets by gas-liquid chromatography. Analyst. 1992 Jan 1;117(9):1457-60.
15. El-Khateeb SZ, El Ragehy NA, Khattab FI, Ahmad AK. Application of PMR spectrometry in quantitative analysis of praziquantel in pharmaceutical preparations. Spectroscopy letters. 1990 Apr 1;23(4):505-14.
16. Garcia JJ, Bolás-Fernández F, Torrado JJ. Quantitative determination of albendazole and its main metabolites in plasma. Journal of Chromatography B: Biomedical Sciences and Applications. 1999 Feb 19;723(1-2):265-71.
17. Morovján G, Csokán P, Makranszki L, Abdellah-Nagy EA, Tóth K. Determination of fenbendazole,
praziquantel and pyrantel pamoate in dog plasma by high-performance liquid chromatography. Journal of chromatography A. 1998 Feb 27;797(1-2):237-44.
18. Chiap P, Evrard B, Bimazubute MA, De Tullio P, Hubert P, Delattre L, Crommen J. Determination of albendazole and its main metabolites in ovine plasma by liquid chromatography with dialysis as an integrated sample preparation technique. Journal of Chromatography A. 2000 Feb 18;870(1-2):121-34.
19. Unvermis E, Colak H, Tumer I, Ergun O. Study on benzimidazole anthelminthic residues in ruminant liver and kidneys by HPLC. Medycyna Weterynaryjna. 2005;61(04).
20. Hormazabal V, Yndestad M. Highperformance liquid chromatographic determination of praziquantel in plasma and tissues of cultured fish for residue and pharmacokinetic studies. Journal of Liquid Chromatography \& Related Technologies. 1995 Feb 1;18(3):589-97.
21. González-Esquivel DF, Okuno CM, Rodríguez MS, Morales JS, Cook HJ. Sensitive high-performance liquid chromatographic assay for praziquantel in plasma, urine and liver
homogenates. Journal of Chromatography B: Biomedical Sciences and Applications. 1993 Mar 5;613(1):174-8.
22. Rogstad A, Hormazabal V, Yndestad M. Extraction of praziquantel from fish tissue and its determination by high-performance liquid chromatography. Journal of Chromatography A. 1987 Jan 1;391:328-33.
23. Hormazabal V, Yndestad MA. Determination of praziquantel in medicated fish feed and sediment by HPLC. Journal of Liquid Chromatography \& Related Technologies. 1995 Mar 1;18(6):1231-8.
24. Bonato PS, Lanchote VL, Takayanagui OM. Simultaneous liquid chromatography-tandem mass spectrometric determination of albendazole sulfoxide and albendazole sulfone in plasma. Journal of Chromatography B. 2003 Jan 5;783(1):237-45.
25. De Ruyck H, Daeseleire E, De Ridder H, Van Renterghem R. Development and validation of a liquid chromatographic-electrospray tandem mass spectrometric multiresidue method for anthelmintics in milk.

Journal of Chromatography A. 2002 Nov 8;976(1-2):181-94.
26. Msagati TA, Nindi MM. Comparative study of sample preparation methods; supported liquid membrane and solid phase extraction in the determination of benzimidazole anthelmintics in biological matrices by liquid chromatography-electrospray-mass spectrometry. Talanta. 2006 Mar 15;69(1):243-50.
27. Procházková A, Chouki M, Theurillat R, Thormann W. Therapeutic drug monitoring of albendazole: determination of albendazole, albendazole sulfoxide, and albendazole sulfone in human plasma using nonaqueous capillary electrophoresis.

ELECTROPHORESIS: An
International Journal. 2000 Mar 1;21(4):729-36.
28. Y. Yang, C. Ye, and G. Yao, Zhongguo-Yiyao-Gongye-Zazhi, infrared spectrophotometric determination of Praziquantel, 1991, 22(12), 544-5.
29. Pütter J. A fluorometric method for the determination of praziquantel in blood-plasma and urine. European journal of drug metabolism and pharmacokinetics. 1979 Jan 1;4(3):143-8.
30. Dey S, Shah S, Ghosh M, Karki N, Basak S, Sahoo NG. A Novel, Quick Column Switching RP-HPLC Guided Metabolite Profiling of AlbendazolePraziquantel in Rat Plasma: Designing New Combination Dosage Regimen with Higher Therapeutic Window. Current Analytical Chemistry. 2018 Dec 1;14(6):604-14.
31. Haswell SJ, Walmsley AD. Chemometrics: the issues of measurement and modelling. Analytica chimica acta. 1999 Nov 22;400(1-3):399-412.
32. Soto C, Contreras D, Orellana S, Yañez J, Toral MI. Simultaneous determination of albendazole and praziquantel by second derivative spectrophotometry and multivariated calibration methods in veterinary pharmaceutical formulation. Analytical Sciences. 2010 Aug 10;26(8):891-6.
33. ICH-Q2B Validation of Analytical Procedures, Methodology International Conference on Harmonization, 1996.

